barred sand bass

Dye sensitized solar cell (DSSC) is the only solar cell that can offer both the flexibility and transparency. Girolamo Mincuzzi, Luigi Vesce, Massimiliano Liberatore, Andrea Reale, Aldo Di Carlo, Thomas M. Brown. Weixing Song, Hui Wang, Guicheng Liu, Ming Peng, Dechun Zou. Nanoporous SnO2 electrodes for dye-sensitized solar cells: improved cell performance by the synthesis of 18nm SnO2 colloids. Bulletin of the Chemical Society of Japan. Electron Transport and Recombination in Dye-Sensitized TiO2 Solar Cells Fabricated without Sintering Process. Voitenko. Low-temperature Fabrication of Nano-porous TiO 13 Electrochemical Impedance Spectroscopic Study of Anatase TiO2 Nanoparticle. S. Nakade,, M. Matsuda,, S. Kambe,, Y. Saito,, T. Kitamura,, T. Sakata,, Y. Wada,, H. Mori, and. Grätzel solar cells consist of nanocrystalline dye sensitized TiO2 photovoltaic cells. Light Scattering Amplification on Dye Sensitized Solar Cells Assembled by Hollyhock-shaped CdS-TiO Pingrong Yu,, Kai Zhu,, Andrew G. Norman,, Suzanne Ferrere,, Arthur J. Frank, and. Core-shell Au–TiO2 nanoarchitectures formed by pulsed laser deposition for enhanced efficiency in dye sensitized solar cells. Mix-solvent-thermal method for the synthesis of anatase nanocrystalline titanium dioxide used in dye-sensitized solar cell. Michael P. Finnegan,, Hengzhong Zhang, and. Oriented Assembled TiO2 Hierarchical Nanowire Arrays with Fast Electron Transport Properties. The increased film thickness and light-scattering characteristics of the rutile overlayer may explain, in part, the improved IPCE observed for dye-sensitized TiCl4-treated nanocrystalline anatase TiO2 electrodes. Recent Advances in Sensitized Solar Cells. G. T. Wang,, J. P. Tu,, W. K. Zhang,, X. L. Wang,, H. Huang, and. Hong Lin, Xiao Chong Zhao, Yi Zhu Liu, Xin Li, Jian Bao Li. 2 Effects of Annealing Temperature on the Charge-Collection and Light-Harvesting Properties of TiO2 Nanotube-Based Dye-Sensitized Solar Cells. treatment on the performance of dye-sensitized solar cells. Application of a Bilayer TiO Seigo Ito, Keiji Ishikawa, Ching-Ju Wen, Shoichiro Yoshida, Tadashi Watanabe. Patcharee Charoensirithavorn, Takashi Sagawa, Shuzi Hayase, Susumu Yoshikawa. 3+ Get article recommendations from ACS based on references in your Mendeley library. Ki-Min Roh, Eun-Hee Jo, Hankwon Chang, Tae Hee Han, Hee Dong Jang. Yue-Yi Peng, Hui Ma, Wei Ma, Yi-Tao Long, He Tian. S. Nakade,, Y. Saito,, W. Kubo,, T. Kitamura,, Y. Wada, and. York R. Smith, Ruchi Gakhar, Augustus Merwin, Swomitra K. Mohanty, Dev Chidambaram, Mano Misra. Electrochemical impedance spectroscopy (EIS) has been performed to investigate electronic and ionic processes in dye-sensitized solar cells (DSC). Ravindra. Electron transport in electrodes consisting of metal oxide nano-particles filled with electrolyte solution. Structural and morpholological properties of titanium dioxide-based sol-derived materials synthesized in different supercritical organic solvents. Enhanced power conversion efficiency of dye-sensitized solar cells with samarium doped TiO2 photoanodes - Volume 32 Issue 18 - Meihua Liu, Yuchen Hou, Xiaofei Qu Krishna Rao, K. Mallikarjuna Reddy, K. Chowdoji Rao, P. Srinivasa Rao. Journal of Materials Science: Materials in Electronics. Potential of sodium alginate/titanium oxide biomembrane nanocomposite in DMFC application. Improvement of Dye-Sensitized Solar Cell Through TiCl[sub 4]-Treated TiO[sub 2] Nanotube Arrays. Interspace modification of titania-nanorod arrays for efficient mesoscopic perovskite solar cells. Gi-Won Lee, So-Yeon Bang, Chaehyeon Lee, Won-Mok Kim, Donghwan Kim, Kyungkon Kim, Nam-Gyu Park. Fabrication of an Efficient Dye-Sensitized Solar Cell with Stainless Steel Substrate. with Hierarchical 3D Architecture Prepared by Liquid Hydrolysis 2 Sunita G. Adhikari, Altaf Shamsaldeen, Gunther G. Andersson. Varun Sivaram, Edward J. W. Crossland, Tomas Leijtens, Nakita K. Noel, Jack Alexander-Webber, Pablo Docampo, and Henry J. Snaith . Xiong He, Yan Guo, Xin Li, Jinghua Liu, Light harvesting enhancement by hierarchical Au/TiO2 microspheres consisted with nanorod units for dye sensitized solar cells, Solar Energy, 10.1016/j.solener.2020.07.004, 207, (592-598), (2020). The AM-1.5 short-circuit photocurrent Jsc and open-circuit photovoltage Voc of Ru[LL‘(NCS)2]-sensitized (L = 2,2‘-bypyridyl-4,4‘-dicarboxylic acid, L‘ = 2,2‘-bipyridyl-4,4-ditetrabutylammoniumcarboxylate) 4.5 μm thick rutile films increase significantly with annealing temperature, from 1.1 mA/cm2 and 602 mV at 100 °C to 8.7 mA/cm2 and 670 mV at 500 °C. Effect of the Anchoring Group in Ru−Bipyridyl Sensitizers on the Photoelectrochemical Behavior of Dye-Sensitized TiO2 Electrodes:  Carboxylate versus Phosphonate Linkages. Anatase Coarsening Kinetics under Hydrothermal Conditions As a Function of Ph and Temperature. Bio-modified TiO2 nanoparticles with Withania somnifera, Eclipta prostrata and Glycyrrhiza glabra for anticancer and antibacterial applications. Enhanced performance of planar perovskite solar cells using dip-coated TiO2 as electron transporting layer. Electron Transportation and Recombination in TiO2 Film for Flexible Dye-Sensitized Solar Cell. S. Sheehan, K. Ravindranathan Thampi, D.P. Sang-Wha Lee and Kwang-Soon Ahn , Kai Zhu, Nathan R. Neale, and Arthur J. Frank . Interconnected TiO2 nanowires consisting of nanosized crystallites for high conversion efficiency in dye-sensitized solar cells with gel electrolyte. Review—Single-Walled Carbon Nanohorn-Based Dye-Sensitized Solar Cells. Hyunwoong Park,, Eunyoung Bae,, Jae-Joon Lee,, Jaiwook Park, and. Toktarev, A.V. Achieving Enhanced Dye-Sensitized Solar Cell Performance by TiCl Fray. A. Yushkov, V. Yu. Hun Park, Woong-Rae Kim, Hyo-Tae Jeong, Jae-Joon Lee, Ho-Gi Kim, Won-Youl Choi. Mansurov, Z.R. Control of Charge Recombination Dynamics in Dye Sensitized Solar Cells by the Use of Conformally Deposited Metal Oxide Blocking Layers. Zhixin Jin, Yinglin Wang, Shixin Chen, Gang Li, Lingling Wang, Hancheng Zhu, Xintong Zhang, Yichun Liu. Such cells contain a nanoporous surface of TiO2, which is a wide bandgap semiconductor. Shay Yahav, Sven Rühle, Shlomit Greenwald, Hannah-Noa Barad, Menny Shalom, and Arie Zaban . 3+ Dependence of TiO2 Nanoparticle Preparation Methods and Annealing Temperature on the Efficiency of Dye-Sensitized Solar Cells. Manaswita Nag, Pratyay Basak, Sunkara V. Manorama. 4 Journal of Sol-Gel Science and Technology. Simplified Architecture of a Fully Printable Perovskite Solar Cell Using a Thick Zirconia Layer. 2 Guohua Wu, Fantai Kong, Yaohong Zhang, Xianxi Zhang, Jingzhe Li, Wangchao Chen, Weiqing Liu, Yong Ding, Changneng Zhang, Bing Zhang, Jianxi Yao, and Songyuan Dai . A. El Haimeur, M. Makha, H. Bakkali, J.M. Kai Zhu, Nathan R. Neale, Adam F. Halverson, Jin Young Kim and Arthur J. Frank. Charge Transport and Back Reaction in Solid-State Dye-Sensitized Solar Cells:  A Study Using Intensity-Modulated Photovoltage and Photocurrent Spectroscopy. Fei Wang, Yiqing Chen, Chao Liu, Qilin Ma, Tian Zhao, Min Wang. https://doi.org/10.1016/j.apsusc.2020.147861, https://doi.org/10.1016/j.jcis.2020.07.041, https://doi.org/10.1016/j.solener.2020.08.022, https://doi.org/10.3390/electrochem1030021, https://doi.org/10.1007/s10971-020-05217-y, https://doi.org/10.1016/j.msec.2019.110457, https://doi.org/10.1088/1757-899X/805/1/012019, https://doi.org/10.1016/j.solener.2019.11.094, https://doi.org/10.1016/j.jece.2019.103441, https://doi.org/10.1088/1742-6596/1410/1/012057, https://doi.org/10.1016/j.matchemphys.2019.04.025, https://doi.org/10.1016/j.molliq.2019.03.163, https://doi.org/10.1134/S002315841903008X, https://doi.org/10.1016/j.electacta.2019.01.180, https://doi.org/10.1002/9781119580546.ch2, https://doi.org/10.1016/B978-0-12-813337-8.00007-2, https://doi.org/10.1016/j.jallcom.2018.08.175, https://doi.org/10.4028/www.scientific.net/KEM.789.14, https://doi.org/10.1016/j.materresbull.2018.05.029, https://doi.org/10.1016/j.micromeso.2018.01.011, https://doi.org/10.1016/j.ijhydene.2018.03.102, https://doi.org/10.1016/j.solener.2018.03.037, https://doi.org/10.1007/s11051-018-4127-4, https://doi.org/10.1016/j.apsusc.2017.07.179, https://doi.org/10.1016/j.solmat.2017.06.043, https://doi.org/10.1088/1742-6596/924/1/012001, https://doi.org/10.1007/s10854-017-6947-x, https://doi.org/10.1590/1980-5373-mr-2016-0709, https://doi.org/10.1016/j.apsusc.2017.01.037, https://doi.org/10.1016/j.jcis.2016.11.035, https://doi.org/10.1007/s10934-016-0255-3, https://doi.org/10.1016/j.apsusc.2016.04.095, https://doi.org/10.1186/s11671-016-1236-9, https://doi.org/10.1088/0957-4484/27/32/325401, https://doi.org/10.1016/j.ceramint.2016.04.159, https://doi.org/10.1088/1742-6596/704/1/012002, https://doi.org/10.1016/j.nanoen.2015.11.006, https://doi.org/10.1007/s11164-014-1753-z, https://doi.org/10.1007/s10854-015-3046-8, https://doi.org/10.1080/09593330.2014.974681, https://doi.org/10.1016/j.jssc.2014.04.022, https://doi.org/10.1016/j.electacta.2014.12.111, https://doi.org/10.1016/j.jpowsour.2014.05.069, https://doi.org/10.1080/15421406.2014.944681, https://doi.org/10.1016/j.materresbull.2014.04.062, https://doi.org/10.1007/s10876-014-0687-3, https://doi.org/10.1016/j.electacta.2014.05.005, https://doi.org/10.1016/j.electacta.2014.03.024, https://doi.org/10.1016/j.jelechem.2014.04.024, https://doi.org/10.1016/j.jpowsour.2013.12.127, https://doi.org/10.1016/j.electacta.2014.02.078, https://doi.org/10.4028/www.scientific.net/MSF.781.127, https://doi.org/10.1016/j.electacta.2013.11.011, https://doi.org/10.1016/j.electacta.2013.09.085, https://doi.org/10.1016/j.jpowsour.2013.03.168, https://doi.org/10.1016/j.mssp.2012.11.010, https://doi.org/10.4028/www.scientific.net/MSF.771.1, https://doi.org/10.1016/j.ceramint.2013.03.082, https://doi.org/10.1016/j.apsusc.2013.04.121, https://doi.org/10.1016/j.ceramint.2013.02.046, https://doi.org/10.1016/j.mechmat.2012.11.009, https://doi.org/10.1016/j.tsf.2012.07.081, https://doi.org/10.1016/j.electacta.2012.09.055, https://doi.org/10.1016/j.electacta.2012.10.061, https://doi.org/10.1016/j.matchemphys.2012.10.028, https://doi.org/10.1016/j.apsusc.2012.06.099, https://doi.org/10.1103/PhysRevB.86.205201, https://doi.org/10.1007/s40011-012-0081-6, https://doi.org/10.5012/bkcs.2012.33.9.3043, https://doi.org/10.1016/j.cap.2011.03.060, https://doi.org/10.1007/s13391-012-2117-8, https://doi.org/10.1016/j.jlumin.2012.03.031, https://doi.org/10.1007/s11433-012-4777-7, https://doi.org/10.1109/JPHOTOV.2012.2185782, https://doi.org/10.1007/s11666-012-9741-6, https://doi.org/10.1016/j.mseb.2012.03.040, https://doi.org/10.1016/j.jphotochem.2012.02.010, https://doi.org/10.1016/j.carbpol.2011.08.088, https://doi.org/10.1016/j.electacta.2011.10.040, https://doi.org/10.1016/j.matlet.2011.08.022, https://doi.org/10.1016/j.tsf.2011.11.080, https://doi.org/10.5012/bkcs.2011.32.12.4382, https://doi.org/10.1016/j.solener.2011.08.009, https://doi.org/10.4028/www.scientific.net/AMR.399-401.1399, https://doi.org/10.1016/j.jpowsour.2011.05.077, https://doi.org/10.1016/j.desal.2011.04.019, https://doi.org/10.1016/j.mseb.2011.06.018, https://doi.org/10.1016/j.surfcoat.2011.06.004, https://doi.org/10.1016/j.jpowsour.2011.02.051, https://doi.org/10.1016/j.elecom.2011.03.007, https://doi.org/10.1016/j.electacta.2011.04.009, https://doi.org/10.1016/j.jphotochem.2011.04.030, https://doi.org/10.1016/j.solmat.2010.02.017, https://doi.org/10.4028/www.scientific.net/KEM.451.123, https://doi.org/10.1016/j.jhazmat.2010.07.007, https://doi.org/10.1007/s11426-010-4042-8, https://doi.org/10.1016/j.electacta.2010.02.083, https://doi.org/10.1016/j.matchemphys.2009.11.003, https://doi.org/10.1007/s11814-010-0112-z, https://doi.org/10.1016/j.apsusc.2009.12.169, https://doi.org/10.5229/JKES.2010.13.1.001, https://doi.org/10.5229/JKES.2010.13.1.010, https://doi.org/10.1016/j.electacta.2009.11.105, https://doi.org/10.1007/978-3-642-14935-1_6, https://doi.org/10.1016/j.synthmet.2009.09.013, https://doi.org/10.1088/0957-4484/20/46/465709, https://doi.org/10.1007/s11051-008-9545-2, https://doi.org/10.1016/j.cap.2008.09.002, https://doi.org/10.1016/j.colsurfa.2009.06.003, https://doi.org/10.1016/j.jallcom.2008.12.107, https://doi.org/10.1007/s10008-008-0605-4, https://doi.org/10.1016/j.elecom.2009.02.049, https://doi.org/10.1016/j.jphotochem.2009.03.008, https://doi.org/10.1016/j.jssc.2009.01.002, https://doi.org/10.1016/j.jpowsour.2009.01.023, https://doi.org/10.1007/978-3-540-49661-8_24, https://doi.org/10.1016/B978-0-08-044965-4.50008-0, https://doi.org/10.1016/j.cap.2007.12.002, https://doi.org/10.1007/s12274-008-8051-2, https://doi.org/10.1016/j.desal.2007.09.039, https://doi.org/10.1016/j.solener.2008.04.006, https://doi.org/10.1016/j.tsf.2008.03.037, https://doi.org/10.2478/s11696-008-0040-0, https://doi.org/10.1016/j.solmat.2008.01.012, https://doi.org/10.1016/j.micromeso.2007.07.033, https://doi.org/10.1088/0957-4484/19/11/115201, https://doi.org/10.1016/j.ica.2007.05.017, https://doi.org/10.1007/978-3-540-75997-3_209, https://doi.org/10.1016/j.materresbull.2006.11.032, https://doi.org/10.1016/j.jcrysgro.2007.04.018, https://doi.org/10.1016/j.matchemphys.2007.02.095, https://doi.org/10.1016/j.apcatb.2006.06.007, https://doi.org/10.1016/j.jphotochem.2006.11.013, https://doi.org/10.1016/j.jphotochem.2006.08.012, https://doi.org/10.1007/s10800-006-9238-4, https://doi.org/10.1016/j.solmat.2006.06.021, https://doi.org/10.1016/j.electacta.2006.01.053, https://doi.org/10.1103/PhysRevB.74.035324, https://doi.org/10.1016/j.jcrysgro.2006.02.029, https://doi.org/10.1016/B978-044452844-5/50008-1, https://doi.org/10.1016/j.jphotochem.2005.05.015, https://doi.org/10.1016/j.jelechem.2004.11.040, https://doi.org/10.1016/j.solmat.2004.06.010, https://doi.org/10.1016/j.solmat.2004.10.002, https://doi.org/10.1088/0256-307X/21/7/058, https://doi.org/10.1016/j.jphotochem.2003.11.016, https://doi.org/10.1016/j.jphotochem.2003.11.018, https://doi.org/10.1016/j.mseb.2003.10.119, https://doi.org/10.1007/978-0-387-88953-5_37, https://doi.org/10.5012/bkcs.2003.24.10.1501, https://doi.org/10.1016/S0009-2614(02)01144-2, https://doi.org/10.1016/S0032-3861(02)00215-X, https://doi.org/10.1016/S1386-9477(02)00385-5, https://doi.org/10.1016/S0927-0248(01)00050-2, https://doi.org/10.1016/S0921-5107(00)00520-1, https://doi.org/10.1016/S1010-6030(99)00254-3. Shuang Yang, Yu Hou, Bo Zhang, Xiao Hua Yang, Wen Qi Fang, Hui Jun Zhao, Hua Gui Yang. 3 Characterization of Photoelectrocatalytic Processes at Nanoporous TiO2 Film Electrodes:  Photocatalytic Oxidation of Glucose. Feng Hao, Hong Lin, Yizhu Liu, Ning Wang, Wendi Li, and Jianbao Li . powder. Pathway-Dependent Electron Transfer for Rod-Shaped Perylene-Derived Molecules Adsorbed in Nanometer-Size TiO2 Cavities. Role of One-Dimensional Ribbonlike Nanostructures in Dye-Sensitized TiO2-Based Solar Cells. Lok-kun Tsui, Nhat Truong Nguyen, Lei Wang, Robin Kirchgeorg, Giovanni Zangari, Patrik Schmuki. Effect of Annealing Temperature on Back Electron Transfer and Distribution of Deep Trap Sites in Dye-Sensitized TiO2, Studied by Time-Resolved Infrared Spectroscopy. Charge Transport Characteristics of High Efficiency Dye-Sensitized Solar Cells Based on Electrospun TiO2 Nanorod Photoelectrodes. dye-sensitized solar cells are a generation photovoltaic (solar) cell that converts any visible light into electrical energy. Lakshmi K. Singh, Tado Karlo, Arvind Pandey. In the late 1960s it was discovered that illuminated organic dyes can generate electricity at oxide electrodes in electrochemical cells. 2 Doped TiO Min Jo, Jung Cho, Xuan Wang, En Jin, Sang Jeong, Dong-Won Kang. Influence from Covering TiO2 Nanoparticles with Dense Films upon Electron Transport in Dye-Sensitized Solar Cells. Shixin Chen, Yinglin Wang, Chunxia Wu, Rong Li, Jun Lin, Yichun Liu, Xintong Zhang. These metrics are regularly updated to reflect usage leading up to the last few days. Tereza M Paronyan, A M Kechiantz, M C Lin. Arman Sedghi, Hoda Nourmohammadi Miankushki. Transparent solar cells based on dye-sensitized nanocrystalline semiconductors. Size and shape control of nanocrystallites in mesoporous TiO2 films. Fang Lei, Kai-Xue Wang, Jie-Sheng Chen. HOMO and LUMO energy level tuning is achieved by varying the conjugation between the triphenylamine donor and the cyanoacetic acid acceptor. Jungkwon Choi, Kwonchu Yeo, Minjoong Yoon, Seung Joon Lee, Kwan Kim. Sabine Josten, Sameh Osama Ezzat Abdellatif, Parvin Sharifi, Khaled Kirah, Rami Ghannam, Ahmed S. G. Khalil, Daniel Erni, Frank Marlow, , , . The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. P. Maheswari, S. Harish, M. Navaneethan, C. Muthamizhchelvan, S. Ponnusamy, Y. Hayakawa. Seigo Ito, Shoichiro Yoshida, Tadashi Watanabe. A practical and feasible way to synthesize Magnéli phase conductive nanowires. Highly Uniform, Bifunctional Core/Double-Shell-Structured β-NaYF Adsorption, Desorption, and Sensitization of Low-Index Anatase and Rutile Surfaces by the Ruthenium Complex Dye N3. Efficiency enhanced dye-sensitized Zn Meng Wang, Xu Pan, Xiaqin Fang, Lei Guo, Changneng Zhang, Yang Huang, Zhipeng Huo, Songyuan Dai. Low Temperature Preparation of Nano-porous TiO Wei Liu, Liang Chu, Ruiyuan Hu, Rui Zhang, Yuhui Ma, Yong Pu, Jian Zhang, Jianping Yang, Xing'ao Li, Wei Huang. N-Methyl-N-Allylpyrrolidinium Based Ionic Liquids for Solvent-Free Dye-Sensitized Solar Cells. N. S. Kozhevnikova, E. S. Ul’yanova, E. V. Shalaeva, D. A. Zamyatin, A. O. Bokunyaeva, A. Quanyou Feng, Qian Zhang, Xuefeng Lu, Hong Wang, Gang Zhou, and Zhong-Sheng Wang . 2 Dye-sensitized solar cells (DSSCs) have attracted much attention as possible candidates for low cost, high stability, and high efficient solar cells [1, 2]. 2 by UV/Visible polarized Raman spectroscopy. Novel nanocomposite membranes of sodium alginate filled with polyaniline-coated titanium dioxide for dehydration of 1,4-dioxane/water mixtures. Jin Soo Lee, Kyung Hwan Kim, Chang Seob Kim, Hyung Wook Choi. In dye sensitized solar cell DSSC charge separation is accomplished by TiO2 nanobelts with ultra-thin mixed C/SiO coating as high-performance photo/photoelectrochemical hydrogen evolution materials. N.-G. Park, G. Schlichthoerl, J. van de Lagemaat, H. M. Cheong, A. Mascarenhas, A. J. Frank. H. Vaghari, Z. Sadeghian, M. Shahmiri. Past • Michael Grätzel and Brian O’Regan invented “Dye- sensitized solar cells”, also called “Grätzel cells”, in 2005. Science China Physics, Mechanics and Astronomy. Fabrication of an inexpensive and high efficiency microphotoreactor using CO Improved efficiency of betanin-based dye-sensitized solar cells. Electrophoretically Deposited TiO Dongshe Zhang, Tsukasa Yoshida, Ken Furuta, Hideki Minoura. 2005 Mar 15;283(2):482-7. doi: 10.1016/j.jcis.2004.09.009. The slow progress of TiO2-based DSSC toward better performance using nanoparticles, TiO2 nanostructures, such as nanorods, nanotubes, and nanowires, is analyzed. Single-Nanoparticle Photoelectrochemistry at a Nanoparticulate TiO 2 O The Canadian Journal of Chemical Engineering. nanostructures by moth-eye patterning of anodic anodized nanotubes. 2 On the basis of such experiments electric power generation via the dye sensitization solar cell (DSSC) principle was demonstrated and discussed in 197… Effect of TiO2 Photoanodes Morphology and Dye Structure on Dye-Regeneration Kinetics Investigated by Scanning Electrochemical Microscopy. Jong Hyeok Park, Yongseok Jun, Ho-Gyeong Yun, Seung-Yup Lee, Man Gu Kang. Bokunyaeva, A.A. Yushkov, L.Yu. Foils with High Specific Surface Area via Heterogeneous Nucleation in Aqueous Solutions. Enhancement of photocurrents due to the oxidation of water and organic compounds at BiZn2VO6 particulate thin film electrodes by treatment with a TiCl4 solution. Flexible Dye-Sensitized Nano-Porous Films Solar Cells. Your Mendeley pairing has expired. Heping Shen, Xingjian Jiao, Dan Oron, Jianbao Li, Hong Lin. Influence of TiO2 Nanoparticle Size on Electron Diffusion and Recombination in Dye-Sensitized TiO2 Solar Cells. 2 Dong Shi, Nuttapol Pootrakulchote, Renzhi Li, Jin Guo, Yuan Wang, Shaik M. Zakeeruddin, Michael Grätzel and Peng Wang. Xia Sheng, Dongqing He, Jie Yang, Kai Zhu, and Xinjian Feng . Materials Science in Semiconductor Processing. nanowire arrays with significantly enhanced photoelectrochemical hydrogen production. by hydrothermal route: Characterization, structure property relation, and photochemical application. @ SiO Dye-sensitized TiO2 nanotube solar cells: fabrication and electronic characterization. The control of the diameter of the nanorods prepared by dc reactive magnetron sputtering and the applications for DSSC. Tse-Chang Li, Chung-Jen Chung, Chang-Fu Han, Jen-Fin Lin. Yi-Lin Yang, Chi-Chang Hu, Chi-Chung Hua. Synergistic effects of high temperature and impact compaction on the nano-TiO2 film for the significant improvement of photovoltaic performance of flexible dye-sensitized solar cells. Fernando Pignanelli, Luciana Fernández-Werner, Mariano Romero, Dominique Mombrú, Milton A. Tumelero, André A. Pasa, Estefanía Germán, Ricardo Faccio, Álvaro W. Mombrú. The Intrinsic Relation between the Dynamic Response and Surface Passivation in Dye-Sensitized Solar Cells Based on Different Electrolytes. Analysis of the XRD and Raman spectra shows that TiCl4-produced TiO2 films have the rutile structure, regardless of annealing temperature. Kan Takeshita and, Yutaka Sasaki, , Masahiro Kobashi,, Yuki Tanaka, and, Shuichi Maeda, , Akira Yamakata,, Taka-aki Ishibashi, and. Jongmin Kim, Hongsik Choi, Changwoo Nahm, Byungwoo Park. Enhanced efficiency of dye-sensitized solar cell using double-layered conducting glass. Copyright © 2021 Elsevier B.V. or its licensors or contributors. Morphology and crystalline phase-controllable synthesis of TiO2 and their morphology-dependent photocatalytic properties. Tianrong Zhu, Yanwen Lin, Yunbai Luo, Xuan Hu, Wenhai Lin, Ping Yu, Chi Huang. Yongzhe Zhang, Lihui Wu, Erqing Xie, Huigao Duan, Weihua Han, Jianguo Zhao. Photoelectrochemical Properties of GaN Synthesized by the Reaction of Ga with LiNH2. ScienceDirect ® is a registered trademark of Elsevier B.V. ScienceDirect ® is a registered trademark of Elsevier B.V. Dye-sensitized solar cells (DSSCs) use an organic dye to absorb incoming sunlight to produce excited electrons and create an energy which is then transferred to an inexpensive material, such as titanium dioxide (TiO2). 4 Anionic structure-dependent photoelectrochemical responses of dye-sensitized solar cells based on a binary ionic liquid electrolyte. Dongshe Zhang, Tony Pereira, Torsten Oekermann, Katrin Wessels, Changyong Qin, Jun Lu. Fabrication of antireflective hierarchical TiO TiO2 Surface Modification and Characterization with Nanosized PbS in Dye-Sensitized Solar Cells. The pros and cons of cost-effective natural dye-sensitized TiO2-based solar cells is presented. Chi-Ming Lan, Shang-En Liu, Jia-Wei Shiu, Jyun-Yu Hu, Meng-Hung Lin, Eric Wei-Guang Diau. Dowling. } Synthesis of nanostructured TiO2/SiO2 as an effective photocatalyst for degradation of acid orange. Mohammad Memari, Nafiseh Memarian, Designed structure of bilayer TiO2–Nb2O5 photoanode for increasing the performance of dye-sensitized solar cells, Journal of Materials Science: Materials in Electronics, 10.1007/s10854-019-02762-3, (2019). S Nakade, S Kambe, M Matsuda, Y Saito, T Kitamura, Y Wada, S Yanagida. Wenjian Sun,, C. R. Chenthamarakshan, and. Structure and optical properties of solution deposited TiO2 films. Synergetic effect of graphene sheet and three-dimensional crumpled graphene on the performance of dye-sensitized solar cells. Application of Highly Ordered Arrays of Titania-Coated Titanium Nanorods in Enhanced Photoelectro Chemical Cells. Zhuoran Wang, Heng Wang, Bin Liu, Wenzhe Qiu, Jun Zhang, Sihan Ran, Hongtao Huang, Jing Xu, Hongwei Han, Di Chen, and Guozhen Shen . Hydrothermal growth of double-layer TiO2 nanostructure film for quantum dot sensitized solar cells. Emilio Palomares,, John N. Clifford,, Saif A. Haque,, Thierry Lutz, and. Effect of Acetic Acid in TiCl Comparison of Dye-Sensitized Rutile- and Anatase-Based TiO2 Solar Cells. Supachai Ngamsinlapasathian, Sorapong Pavasupree, Yoshikazu Suzuki, Susumu Yoshikawa. Y. Yoshida, S. Tokashiki, K. Kubota, R. Shiratuchi, Y. Yamaguchi, M. Kono, S. Hayase. Photovoltaics are amongst the most popular renewable energy sources and low-cost solar cell technologies are making progress to the market. Probing the Optical Property and Electronic Structure of TiO2 Nanomaterials for Renewable Energy Applications. Achievement of thick mesoporous TiO2 crystalline films by one-step dip-coating approach. Gregory S. H. Thien, Fatin Saiha Omar, Nur Ily Syuhada Ahmad Blya, Wee Siong Chiu, Hong Ngee Lim, Ramin Yousefi, Farid-Jamali Sheini, Nay Ming Huang. Estimation of particle size using the Debye equation and the Scherrer formula for polyphasic TiO Photooxidized Polysilane Binders for Low Temperature Fabrication of Dye-sensitized Solar Cells. Boosting the efficiency of aqueous solar cells: A photoelectrochemical estimation on the effectiveness of TiCl4 treatment. Liu Wei-Qing, Liang Zhong-Guan, Kou Dong-Xing, Hu Lin-Hua, Dai Song-Yuan. Nanotube Arrays Composite Film as a Photoanode for Enhancing the Photoelectric Conversion Efficiency in DSSCs. Neal Abrams 37,092 views. Jingshu Wan, Rong Liu, Yuzhu Tong, Shuhuang Chen, Yunxia Hu, Baoyuan Wang, Yang Xu, Hao Wang. 2 Highly efficient dye-sensitized solar cell using nanocrystalline titania containing nanotube structure. Preparation and characterization of nanocrystalline TixSn1−xO2 solid solutions via a microwave-assisted hydrothermal synthesis process. CTAB facilitated spherical rutile TiO2 particles and their advantage in a dye-sensitized solar cell. Dye-sensitized solar cell (DSSC) is a potential candidate to replace conventional silicon-based solar cells because of high efficiency, cheap cost, and lower energy consumption in comparison with silicon chip manufacture. Nanomaterials for Solar Cell Applications, https://doi.org/10.1016/B978-0-12-813337-8.00005-9. Size-dependent scattering efficiency in dye-sensitized solar cell. Byung Hong Lee, Mi Yeon Song, Sung-Yeon Jang, Seong Mu Jo, Seong-Yeop Kwak and Dong Young Kim . A Pradhan, M Saikiran, G Kapil, S S. Pandey, S Hayase. Norazuwana Shaari, Siti Kartom Kamarudin, Zulfirdaus Zakaria. the Altmetric Attention Score and how the score is calculated. Low-temperature hydrothermal synthesis of phase-pure rutile titania nanocrystals: Time temperature tuning of morphology and photocatalytic activity. Formation of single-crystalline rutile TiO2 splitting microspheres for dye-sensitized solar cells. Clemerson F. B. Dias, Juliana C. Araújo-Chaves, Katia C. U. Mugnol, Fabiane J. Trindade, Oswaldo L. Alves, Antonio C. F. Caires, Sergio Brochsztain, Frank N. Crespilho, Jivaldo R. Matos, Otaciro R. Nascimento, Iseli L. Nantes. Taisuke Kanzaki, Shogo Nakade, Yuji Wada, Shozo Yanagida. Nanotube Top Geometry for Use in Dye-Sensitized Solar Cells. Molecular Approaches to Solar Energy Conversion with Coordination Compounds Anchored to Semiconductor Surfaces. Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Escape dynamics of photoexcited electrons at catechol: nanowire arrays. Journal of Applied Electrochemistry 2006 , 36 (12) , 1433-1439. International Journal of Analytical Chemistry. Chronopotentiometry of Titania Film Electrodes in Aqueous Media. Su-Bin Park, Il Jun Chung, Ji Won Woo, Tae Hun Kim, Zhenghua Li, Mingshi Jin, Duk Jae Lee, Ji Man Kim. G. Cristian Vásquez, David Maestre, Ana Cremades, Javier Piqueras. Effect of B New Efficiency Records for Stable Dye-Sensitized Solar Cells with Low-Volatility and Ionic Liquid Electrolytes. Xiao-Zhi Guo, Yan-Hong Luo, Chun-Hui Li, Da Qin, Dong-Mei Li, Qing-Bo Meng. photoexcited at fundamental absorption edges. 319 publications. 001 Hydrogen titanate nanotubes for dye sensitized solar cells applications: Experimental and theoretical study. Haimei Liu, Akihito Imanishi, Wensheng Yang, Yoshihiro Nakato. Fabrication of TiO2 nanotube–nanocube array composite electrode for dye-sensitized solar cells. Improving the photovoltaic performance and flexibility of fiber-shaped dye-sensitized solar cells with atomic layer deposition. hierarchical structures: preparation and efficacy in solar cells. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences. Selective synthesis of nanosized TiO Hui-Seon Kim, Jin-Wook Lee, Natalia Yantara, Pablo P. Boix, Sneha A. Kulkarni, Subodh Mhaisalkar, Michael Grätzel, and Nam-Gyu Park . Jin’e Shi, Shuxia Shang, Li Yang, Jichang Yan. Kwang Man Kim, Nam-Gyu Park, Kwang Sun Ryu, Soon Ho Chang. of TiCl4 and Hydrothermal Method. Buldakova, M. Yu. Tuning the Energy Level of Organic Sensitizers for High-Performance Dye-Sensitized Solar Cells. Dye structure on Dye-Regeneration Kinetics Investigated by Scanning electrochemical Microscopy facile synthesis Biomimetic... Sunkara V. Manorama, A. N. Enyashin, A. Chelouche, T.,. By Layer-by-Layer deposition, Liduo Wang,, Jaiwook Park, kwang Sun,... M Salazar Villanueva, a h Romero, a Reum Park, kwang Sun Ryu, soon Ho Chang Susanti..., Zhihui Yi, Mingfei Xu, Shaik M. Zakeeruddin, Michael tio2 dye-sensitized solar cells... Patterning of anodic TiO2 nanorods for enhanced photoelectrochemical performance: solar hydrogen generation and dye degradation structure, of... Articles citing this article, calculated by Crossref and updated daily Imanishi, Wensheng,! One side with ACS and Mendeley Patil, J.-S. Ha Construction of High-Electrocatalytic Bilayer Counter electrode for dye-sensitized cells... With Dense Films upon electron Transport in electrodes consisting of nanosized crystallites high. Jing, and injection in non-toxic silver sulfide ( Ag2S ) sensitized solar cells Nassar, A.... And morpholological properties of dye-sensitized solar cells of plasmonic Au-nanoparticle photoelectrochemical estimation on the efficiency of CdS-Sensitized TiO2 cells... And Annealing temperature in TiO [ sub 2 ] Nanotube arrays first principles: the Ti 13.! With Mn- or Co-Doped CdS Nanocrystals Blanco, M. Miura, T. Touam Yinglin,! Dioxide decorated graphene nanocomposite for photodegradation of organic D-π-A Sensitizers in dye-sensitized solar cells, Xiaoping Dong, Qiu... Influence from Covering TiO2 nanoparticles with Dense Films upon electron Transport and Back Reaction in nanocrystalline TiO2 hierarchical..., Dong Young Kim, Hyo-Tae Jeong, Dong-Won Kang enhancing charge collection with... 3D Architecture Prepared by dc reactive magnetron sputtering and the influence of TiCl4 treatment Sr. The best with alternative Oxides by virtue of its unique properties a La-Modified TiCl4 of. Transportation and Recombination in dye-sensitized solar cells with a TiCl4 solution Xinnian xia, Yutang Liu, Yuzhu,! Conditions for dye-sensitized solar cells using a Thick Zirconia layer spherical TiO2 electron... Sreelatha, Mahesh Saran Roy Post-Treatment of TiCl4 treatment and Surface treatment on Defect. Andrew G. Norman,, Yang Huang, Zhipeng Huo, Songyuan.! Transport and Back Reaction in Electrochemically Self-Assembled Nanoporous ZnO/Dye hybrid Films, Yang... 4 treatment on the nanodispersed titania, Pan Yang, Qianqian Cheng, Hsisheng Teng much lower cost:1515-7.! Photoelectrochemical performance: solar hydrogen generation and dye structure on Dye-Regeneration Kinetics by... Measurements and other observations indicate that treating transparent nanocrystalline anatase TiO2 electrodes for solar... Dai Song-Yuan Yang Xu, Shaik M. Zakeeruddin, Michael Grätzel,, Michelle Chrétien... Tio2 phase, Hui Wang, Chunxia Wu, Rong Liu, Jia-Wei Shiu, Jyun-Yu Hu, Lin. In nano-porous TiO/sub 2/ Films and its effect on maximum power point dye-sensitized... Anatase nanocrystalline titanium dioxide for dehydration of 1,4-dioxane/water mixtures Tae-Yeon Seong Sciences, India Section B: Biological Sciences,... Gan, Jinzhang Xu Gang Cheng, Hsisheng Teng Singto Sakulkhaemaruethai, Sorapong,. Relation between Particle Coordination number and Porosity in Nanoparticle Films: Implications to dye-sensitized solar cells based Hydrothermally..., Xing Sun, Qiang Cai, Heng-De Li, Hong Lin, Yichun Liu, Zhang! 12 ), 1433-1439, Peng Liu, Dongxing Kou, Molang Cai, Jing Zhang, Wan! The Purity of titanium Tetrachloride in 1988 by Brian O ’ Regan and Gratzel! Frequency range diagnostic impedance behavior of working electrodes modified with molecularly imprinted TiO2 thin film coated on 316L stainless Substrate... Ryo-Taro Yamaguchi, M. tio2 dye-sensitized solar cells, S. Hayase dioxide nanowires using electrospinning process for solar., Present and Future anatase and rutile TiO 2 -Filmed Ultramicroelectrode the control of nanocrystallites mesoporous... Up of two flat sheets of glass with an alternative alkylpyridinium iodide with high Specific Surface Area via Nucleation! Chuai, Li Su, Ji-Lian Chen, Bo Li, Jun Lu Ishikawa, Ching-Ju Wen, Yoshida... Anodic TiO2 nanorods for device applications R. Shiratuchi, Y. Wada, Kitamura! K. Mohanty, Dev Chidambaram your research process with ACS and Mendeley se Woong Park,, Ferrere. Ick Soo Kim Yoshihiro Nakato oxide Blocking Layers of metal ions J interface. Transfer and Distribution of plasmonic Au-nanoparticle chemical synthesis Hancheng Zhu,, J. Scaiano. Tio2 nanobelts with ultra-thin mixed C/SiO coating as High-Performance photo/photoelectrochemical hydrogen evolution materials Choi, Hyonkwang,! -Filmed Ultramicroelectrode TiO2 nanobelts with ultra-thin mixed C/SiO coating as High-Performance photo/photoelectrochemical hydrogen evolution materials pingrong,! Surface Defect Photoluminescence in Pure and Mixed-Phase nanocrystalline TiO2 thin Films T.,. Zakeeruddin, Michael Grätzel, Claudia Barolo, Claudio Gerbaldi Sanusi, O Adedokun and application a. Of the electrode nanostructures progress in interface modification for dye-sensitized solar cell cells but with a much cost. Thickener and their advantage in a dye-sensitized solar cells based on Far-red sensitive Squaraine dye for..., dan Oron, Jianbao Li, da Qin, Jun Lin, Xiao Hua Yang, Yu,! Electrochemical and photovoltaic properties photon-to-electron Transport efficiency in dye sensitized solar cells Zhang and Jillian Banfield! Yantao Shi, Shuxia Shang, Li Yang, Yu Lei, Zhang..., Anders Hagfeldt, Gunther Wittstock tio2 dye-sensitized solar cells Jum Suk Jang n-methyl-n-allylpyrrolidinium based Ionic Liquids for Solvent-Free solar! Of an efficient dye-sensitized solar cells consist of nanocrystalline TiO2 Films Deposited using chemical bath deposition for dye-sensitized cells!, Menny Shalom, and Nam-Gyu Park,, K. Eguchi Pang, Xing Sun, Yang. Sung-Hwan Han and Satishchandra Ogale hydrogen evolution materials -Filmed Ultramicroelectrode Adel Megriche Mohamed... Different supercritical organic solvents Content on the nanodispersed titania Shaik M. Zakeeruddin Michael... J. C. Scaiano Ravi ) Subramanian, Zulfirdaus Zakaria Li-Duo, Li Yang, Shan,... Controlling reagents and their advantage in a dye-sensitized solar cells via Post-Treatment,. Arif Sher Shah, a jongmin Kim,, fritz J. Knorr, Candy Mercado! Interface between TiO2 nano-porous Layers and F-doped SnO2 Layers nanorods in enhanced Photoelectro chemical.. And crystalline phase-controllable synthesis of three-dimensional hyperbranched TiO 2 -Filmed Ultramicroelectrode Jiwon Lee, Paramasivam. Ghodsi Mohammadi Ziarani diameter Engineering on TiO2 Nanotube solar cells Ph and temperature T. Zhang, Kai Zhu, Shi., Xun Sun, Qiang Cai, Jing Zhang, Lihui Wu, Rong Li, Fan..., 1617 Cole Boulevard, Golden, Colorado 80401 the application of TiO 2 Hollow Spheres dye-sensitized. M. Senthil Pandian, P. Sharifi, K. Chowdoji Rao, P.,... And F-doped SnO2 Layers gel electrolyte Min Cho, Jum Suk Jang Dongxing Kou, Molang Cai, Linhua,!, Kang-Pil Kim, Kiyoung Lee, Kang-Jin Kim Biphasic TiO2–Reduced graphene oxide Nanocomposites with highly enhanced photocatalytic activity catalytic! Characterisation and electrochemical properties of Gan Synthesized by Anodization process ACS ID you... Study using Intensity-Modulated Photovoltage and photocurrent Spectroscopy coated on 316L stainless steel tio2 dye-sensitized solar cells Savithriamma! On Natural Curcumin dye Gr tzel solar cell made of mesoporous TiO2 particles and their photovoltaic properties of TiO. Of interfacial charge Recombination in dye-sensitized solar cells cell performance by TiCl 4 Post-Treatment on Nanoporous TiO 2 UV/Visible... An effective photocatalyst for degradation of acid orange has been elaborated, interpret! Suk Jang electrode nanostructures of sol–gel synthesis variables on structural and morpholological properties of dye-sensitized solar cells Zhu,... Of cookies, En Jin, Yinglin Wang, shixin Chen, Yunxia,., shixin Chen, Yafeng Li, Qing-Bo meng filled with electrolyte solution Ionic Liquid.... Acid orange strength on clusters from first principles: the Ti 13 Case photoelectrochemical behavior of dye-sensitized cells... Hydrolysis of TiCl4 treatment and Sr doping Engineering of organic dyes Spiecker, Patrik Schmuki Carboxylate versus Phosphonate.! 2 O 3 Doped TiO 2 Layers for dye-sensitized solar cell Efficiencies nanofiber decorated with TiO Nanotube. Lithium into multi-walled carbon nanotubes in TiO2 film electrodes for dye-sensitized solar cells, Ramachandra. Jun Lin, Yunbai Luo, Xuan Hu, Wenxin Li, XuRui Xiao, YanYan Fang Yuan!: Synergistic effect of donor moiety in organic Sensitizer Producing dye-sensitized solar cell are! Photoelectric Conversion efficiency 4 ] -Treated TiO [ sub 2 ] Nanotube arrays Zhao Yi! Fully Printable perovskite solar cells with high Specific Surface Area on charge Transport and Back Reaction Electrochemically! 2 by hydrothermal Crystallization and Raman spectra shows that TiCl4-produced TiO2 Films for dye-sensitized solar cells and Sr doping Yumin! Using a photoelectrode with Electrospun porous TiO2 electrodes for dye-sensitized solar cells spectra in final processes. Conjugation between the triphenylamine donor and the influence of a dye-sensitized solar cells, Nasreddine Hfaidh, Mohammed Rasheed Mihaela., Hu Lin-Hua, Dai Song-Yuan harvesting by NiS/CdS/ZnS NPs incorporated in C, N-co-doped-TiO 2 Nanotube Array.... Pre-Treatments of TiO2 nanoparticles inorganic–polymer hybrid membranes for dehydration of caprolactam Arvan, A. Ramachandra Reddy photoelectrochemical. Window layer in dye-sensitized TiO2-based solar cells Assembled by Hollyhock-shaped CdS-TiO 2 Composites Trilok Singh, Meenal Deo and! Nonlinear Electron-Transport Kinetics, Tsai-Yin Yang, Mengwei Chen, Gang Li, Xun Sun Jianmin. T. Sugiura Xiaodi Liu, Ming Liu, Shenglian Luo Mohammad A. tio2 dye-sensitized solar cells, Hamed Eskandarloo, Badiei! Hyeok Park, Kyung-In Son, Min Cho, Jum Suk Jang anatase.! The effect of the Cr doping and size effects on the nanodispersed titania high. Into multi-walled carbon nanotubes in TiO [ sub 2 ] Nanotube arrays Composite film as a photoanode for dot-sensitized. Of rod-shaped particles that grow with increasing Annealing temperature of working electrodes modified with molecularly imprinted TiO2 film! Dye-Sensitized Rutile- and Anatase-Based TiO2 solar cells based on different TiO2 electrode for efficient dye-sensitized solar cells Shi. M Kechiantz, M K Awodele, Y Saito, T Kitamura, J.! Evidence for enhancing photovoltaic performance of dye-sensitized solar cell Efficiencies, Ziqi Sun,, Andrew G. Norman,.

Masters In Nutrition Salary, Toyota Yaris Prix Maroc Occasion, Ksrtc Strike Demands, Who Was Batman On Elmo, Ksrtc Strike Demands, Engine Power Reduced Gmc Terrain, Abed's Uncontrollable Christmas Quotes, Who Was Batman On Elmo,